NASA – Next Solar Cycle will be Weakest in 200 Years

September 5, 2019 by Robert at Ice Age Now

NASA dropped this bombshell announcement in a little-heralded news release coyly entitled “Solar Activity Forecast for Next Decade Favorable for Exploration.” In other words, NASA tried to make it sound like good news.

In the release, dated 12 June 2019, NASA described the upcoming decline in solar activity as a window of opportunity for space exploration instead of acknowledging the disastrous consequences such a decline could wreak on civilization.

Here are some direct quotes from the news release:

The Sun’s activity rises and falls in an 11-year cycle. The forecast for the next solar cycle says it will be the weakest of the last 200 years. (Emphasis added) The maximum of this next cycle – measured in terms of sunspot number, a standard measure of solar activity level – could be 30 to 50% lower than the most recent one. The results show that the next cycle will start in 2020 and reach its maximum in 2025.

Sunspots are regions on the Sun with magnetic fields thousands of times stronger than the Earth’s. Fewer of them at the point of maximum solar activity means fewer dangerous blasts of radiation.

The new research was led by Irina Kitiashvili, a researcher with the Bay Area Environmental Research Institute at NASA’s Ames Research Center, in California’s Silicon Valley. It combined observations from two NASA space missions – the Solar and Heliospheric Observatory and the Solar Dynamics Observatory – with data collected since 1976 from the ground-based National Solar Observatory.

In admitting that solar activity during sunspot-cycle 25 could be the weakest in 200 years, NASA was effectively forecasting a return to Dalton Minimum (1790-1830) conditions. But the release gives no mention of the ferocious cold, no mention of the disastrous crop losses, no mention of the ensuing starvation and famine, no mention of the wars over food, no mention of the powerful earthquakes, no mention of the catastrophic volcanic eruptions during the Dalton Minimum.

NASA Paper is HERE

Some people consider the low solar activity a trigger for other catastrophic events such as the 1811-1812 New Madrid Fault Earth Quakes and 1815 eruption of Mount Tamboura.  As you can see from this chart global cooling produced some strong eruption.

Volcanic activity

I have done some investigation of the cooling triggering earthquakes and significant eruptions but could not find any smoking-gun evidence.  [Your thoughts?]

The said the real issue is global cooling, as  1-2 degrees C of cooling shortens the growing seasons and disrupts the food supply. This is a problem for a planet with more mouths to feed with every passing year.  Modern transportation can mitigate the distribution issues that plagued other grand minimum populations, but you first have to have agricultural output to distribute.  This year the growing season is going to be much shorter than last year. Your thoughts?

Advertisements

Can the Sun Produce More Powerful Storms on Earth? (Update 09-04-19)

In a comment on this post, the “Atmosphere Guy” brought up an interesting idea. His thought was that increases in solar Kp (fluctuations in the solar magnetic field )  and the resulting flow of high energy particles can accelerate the development of jet-streams, hurricanes, and cyclones on the earth. 

With the formation of hurricane Dorian in the Atlantic, I have been tracking the Kp and A index and the growth of Dorian.

Screen Shot 2019-09-04 at 12.35.04 PM

Track map of Dorian shows the location and intensity of the storm at 6-hour intervals. The color represents the storm’s maximum sustained wind speeds as classified in the Saffir-Simpson scale. 

Update 01-04-19

Here is the Kp index in 3-hour intervals:

Screen Shot 2019-09-04 at 12.38.39 PM
Kp Index at 3-hour intervals starting 29 August 2019
Screen Shot 2019-09-04 at 12.51.45 PM
An A Index Summary of the Kp Index

Update 09-04-19

Screen Shot 2019-09-04 at 11.26.36 AM

 

Do you think there is a connection between the growth of Dorian’s power and the Sun’s magnetic field activity?  How?

The Next Great Extinction Event Will Not Be Global Warming – It Will Be Global Cooling

By Allan M. R. MacRae, B.A.Sc., M.Eng., August 2019

CATASTROPHIC GLOBAL WARMING IS A FALSE CRISIS – THE NEXT GREAT EXTINCTION WILL BE GLOBAL COOLING

Forget all those falsehoods about scary global warming, deceptions contrived by wolves to stampede the sheep. The next great extinction event will not be global warming, it will be global cooling. Future extinction events are preponderantly cold: a glacial period, medium-size asteroid strike or supervolcano. Humanity barely survived the last glacial period that ended only 11,500 years ago, the blink-of–an-eye in geologic time.

Cold, not heat, is by far the greater killer of humanity. Today, cool and cold weather kills about 20 times as many people as warm and hot weather. Excess Winter Deaths, defined as more deaths in the four winter months than equivalent non-winter months, total over two million souls per year, in both cold and warm climates. Earth is colder-than-optimum for humanity, and currently-observed moderate global warming increases life spans.

I am not in agreement with all the author’s points, but it is an interesting read. Grand minimums are referenced. Some of the comments give some perspective to the author’s claims of rapid cooling.

The full post is HERE.

The Sun’s Weather Cycle May Start in ‘Tsunamis,’ End with ‘Terminators’

By Passant Rabie ar Science & Astronomy 

A tsunami of plasma rushes through the sun before a new sunspot cycle begins

Vw4PsTjP4g3DcMtyY5Tm87-1024-80

An image of the sun in ultraviolet light showing a string of active regions near the Sun’s equator over about 36 hours. (Image: © NASA)

Astronomers may have finally figured out what causes the sun’s 11-year cycle of activity, and it involves a “tsunami” of magnetic fields. 

The sun, like other stars, goes through a cycle marked by a change in magnetic activity, levels of radiation, and the number and size of sunspots. While our sun’s 11-year cycle was discovered more than a century ago, predicting exactly when one cycle ends and a new one begins has been an ongoing challenge. 

A pair of related studies have mapped out the sun’s activity over the course of 140 years, looking for clues about the solar cycle that are visible on the surface. By looking at the way bright flashes of ultraviolet light migrate across the sun’s surface, the researchers discovered that the sun’s mysterious 11-year cycle may be marked by a “terminator” event that ends one cycle and a “tsunami” of magnetic fields that initiates a new one. Those bright flickers of ultraviolet light and the sun’s magnetic fields appear to drive the cycle itself, and monitoring those flashes could help scientists predict when a new cycle will begin.

Continue reading HERE to see the interactive graphics.

Galactic Cosmic-Rays Research Rains On Man-Made Climate Change Parade

A pair of new international studies which punched holes in the absoluteness of man-made climate change have gotten little-to-no attention in the corporate media.

Researchers from Kobe University in Japan found that high-energy particles from space known as galactic cosmic rays affect the Earth’s climate by increasing cloud cover, causing an “umbrella effect.”

A second study, a paper published by researchers from the University of Turku in Finland, concluded that even though observed changes in the climate are real, the effects of human activity on these changes are insignificant. Such findings create cognitive dissonance for celebrity and media actors committed to the narrative that human behavior is killing the planet.

“We have to recognize that the anthropogenic climate change does not exist in practice,” the study concluded.

Professor Masayuki Hyodo, who led the research team at Kobe University, said: “The Intergovernmental Panel on Climate Change (IPCC) has discussed the impact of cloud cover on climate in their evaluations, but this phenomenon has never been considered in climate predictions due to the insufficient physical understanding of it.”

Professor Hyodo continued: “This study provides an opportunity to rethink the impact of clouds on climate. When galactic cosmic rays increase, so do low clouds, and when cosmic rays decrease clouds do as well, so climate warming may be caused by an opposite-umbrella effect. The umbrella effect caused by galactic cosmic rays is important when thinking about current global warming as well as the warm period of the medieval era.”

Continue reading HERE.

During a Grand Minimum, there are fewer sunspots and more cosmic rays increasing cloud cover, reducing temperatures by 1-2 degrees C. This temperature reduction shortens the growing season by 10 days for every 1/2 a degree according to some estimates.  On the other hand, fewer cosmic rays would increase warmth and extend growing seasons allowing agricuture at higher latitude, expanding the global food supply.  This is why we monitor sunspots and cosmic rays at the Next Grand Minimum.

Cosmic Ray Update: New Results from the Moon

By Dr Tony Phillips

July 16, 2019: Note to astronauts: 2019 is not a good year to fly into deep space. In fact, it’s shaping up to be one of the worst of the Space Age.

The reason is, the solar cycle. One of the deepest Solar Minima of the past century is underway now. As the sun’s magnetic field weakens, cosmic rays from deep space are flooding into the solar system, posing potential health risks to astronauts.

NASA is monitoring the situation with a radiation sensor in lunar orbit. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) has been circling the Moon on NASA’s Lunar Reconnaissance Orbiter spacecraft since 2009. Researchers have just published a paper in the journal Space Weather describing CRaTER’s latest findings.

lro

“The overall decrease in solar activity in this period has led to an increased flux of energetic particles, to levels that are approaching those observed during the previous solar minimum in 2009/2010, which was the deepest minimum of the Space Age,” write the authors, led by Cary Zeitlin of NASA’s Johnson Space Flight Center. “The data have implications for human exploration of deep space.”

This always happens during Solar Minimum. As solar activity goes down, cosmic rays go up. The last two Solar Minima have been unusually deep, leading to high cosmic ray fluxes in 2008-2010 and again in 2018-2019. These are the worst years since humans first left Earth in the 1960s.

“It’s a bit counterintuitive,” says one of the authors, Nathan Schwadron, a space physicist at the University of New Hampshire. “Solar Minimum may actually be more dangerous than Solar Maximum.”

In their paper, Zeitlin, Schwadron and co-authors describe an interesting experiment by NASA that highlights the relative peril of solar flares vs. cosmic rays. In 2011, NASA launched the Curiosity rover to Mars. Inside its spacecraft, the rover was protected by about as much shielding (20 gm/cm^2) as a human astronaut would have. A radiation sensor tucked inside kept track of Curiosity’s exposure.

The results were surprising. During the 9-month journey to Mars, radiation from solar flares (including the strongest flare of the previous solar cycle) accounted for only about 5% of Curiosity’s total dose. The remaining 95% came from cosmic rays.

Why the imbalance? “Solar flares of the size we’ve seen during the Space Age can be largely mitigated by achievable depths of spacecraft shielding(1),” explains Zeitlin. “We can’t stop the highest energy cosmic rays, however. They penetrate the walls of any spacecraft.”

Proton_F180_red-1_crop

Solar flares are still a concern. If an astronaut were caught outside on EVA during an intense, unexpected flare, acute effects could include vomiting, fatigue, and low blood counts. A quick return to Earth might be required for medical care. Cosmic rays are more insidious, acting slowly, with maladies such as cancer or heart disease showing up years after the exposure.

As 2019 unfolds, Solar Minimum appears to still be deepening. Cosmic rays haven’t quite broken the Space Age record set in 2009-2010, but they’re getting close, only percentage points from the highest values CRaTER has ever recorded.

“No one can predict what will happen next,” says Schwadron. “However, the situation speaks for itself: We are experiencing a period of unusually weak solar cycles. We have to be prepared for strong cosmic rays.”

END NOTES:

(1) According to Zeitlin, “achievable” shielding depths will be at least 20 to 30 gm/cm^2. “Vehicles carrying humans into deep space will likely have storm shelters that will provide this much shielding or more, and that would indeed be sufficient – even for an event like the great solar flare of August 1972 during the Apollo program – to keep the accumulated dose below the 30-day limit.”

REFERENCE:

“Update on Galactic Cosmic Ray Integral Flux Measurements in Lunar Orbit With CRaTER”, by C. Zeitlin, N. A. Schwadron, H. E. Spence, A. P. Jordan, M. D. Looper, J. Wilson, J. E. Mazur, L. W. Townsend. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019SW002223

Link to the original post is HERE

 

Another Sunspot From The Next Solar Cycle

Spaceweather.com:

Solar Cycle 25 is coming to life. For the second time this month, a sunspot from the next solar cycle has emerged in the sun’s southern hemisphere. Numbered “AR2744”, it is inset in this magnetic map of the sun’s surface from NASA’s Solar Dynamics Observatory:

Solar_cycle25_start

How do we know this sunspot belongs to Solar Cycle 25? Its magnetic polarity tells us so. Southern sunspots from old Solar Cycle 24 have a -/+ polarity. This sunspot is the opposite: +/-. According to Hale’s Law, sunspots switch polarities from one solar cycle to the next. AR2744 is therefore a member of Solar Cycle 25.

Solar cycles always mix together at their boundaries. Right now we are experiencing the tail end of decaying Solar Cycle 24. AR2744 shows that we are simultaneously experiencing the first stirrings of Solar Cycle 25. The transition between Solar Cycle 24 and Solar Cycle 25 is underway.

Shortlived “ephemeral sunspots” belonging to Solar Cycle 25 have already been reported on Dec. 20, 2016; April 8, 2018; Nov. 17, 2018; May 28, 2019 and July 1, 2019. Today’s sunspot is more important than those earlier examples because it has lasted long enough to receive a numberical designation: AR2744. Record-keepers will likely mark this as the first official sunspot of Solar Cycle 25.

This development does not mean Solar Minimum is finished. On the contrary, low solar activity will probably continue for at least another year as Solar Cycle 24 decays and Solar Cycle 25 slowly sputters to life. AR2744 is an important sign, however, that the solar cycle is progressing.

http://spaceweather.com

New Evidence Cosmic Rays Impact Climate

cosmic-ray-shower
New evidence suggests that high-energy particles from space known as galactic cosmic rays affect the Earth’s climate by increasing cloud cover, causing an “umbrella effect.” –Kobe University, Japan, 3 July 2019

Intensified East Asian winter monsoon during the last geomagnetic reversal transition
Yusuke Ueno, Masayuki Hyodo, Tianshui Yang & Shigehiro Katoh
Scientific Reportsvolume 9, Article number: 9389 (2019) | Download Citation

Abstract

The strength of Earth’s magnetic dipole field controls galactic cosmic ray (GCR) flux, and GCR-induced cloud formation can affect climate. Here, we provide the first evidence of the GCR-induced cloud effect on the East-Asian monsoon during the last geomagnetic reversal transition. Bicentennial-resolution monsoon records from the Chinese Loess Plateau revealed that the summer monsoon (SM) was affected by millennial-scale climate events that occurred before and after the reversal, and that the winter monsoon (WM) intensified independently of SM variations; dust accumulation rates increased, coinciding with a cooling event in Osaka Bay. The WM intensification event lasted about 5000 years across an SM peak, during which the Earth’s magnetic dipole field weakened to <25% of its present strength and the GCR flux increased by more than 50%. Thus, the WM intensification likely resulted from the increased land–ocean temperature gradient originating with the strong Siberian High that resulted from the umbrella effect of increased low-cloud cover through an increase in GCR flux.

Details HERE

 

Sunspots from Solar Cycle 25?

Spaceweather.com has the details:

SUNSPOTS FROM THE NEXT SOLAR CYCLE: Solar Minimum is here, but it won’t last forever. In fact, the next solar cycle made a brief appearance this week. On July 1st, a small sunspot materialized in the sun’s southern hemisphere (S21W02), then, hours later, vanished again. The polarity of its magnetic field marks it as a likely member of Solar Cycle 25:

magnetogram_inset_strip

More HERE.

If they do not hang around and get a number do they really count as cycle 25 spots?