Climate and the Solar Magnetic Field

Presentation by Professor Valentina Zharkova

When: Wednesday 31st October, from 6:00 PM – 7:30 PM
Where: 55 Tufton Street, Westminster, SW1P 3QL

Principal component analysis (PCA) of the solar background magnetic field observed from the Earth, revealed four pairs of dynamo waves, the pair with the highest eigen values are called principal components (PCs).

PCs are shown to be produced by magnetic dipoles in inner and outer layers of the Sun, while the second pair of waves is assumed produced by quadruple magnetic sources and so on. The PC waves produced by a magnetic dipole and their summary curve were described analytically and shown to be closely related to the average sunspot number index used for description of solar activity. Based on this correlation, the summary curve was used for the prediction of long-term solar activity on a millennial timescale. This prediction revealed the presence of a grand cycle of 350-400 years, with a remarkable resemblance to the sunspot and terrestrial activity features reported in the past millennia: Maunder (grand) Minimum (1645-1715), Wolf (grand) minimum (1200), Oort (grand) minimum (1010-1050), Homer (grand) minimum (800-900 BC); the medieval (900-1200) warm period, Roman (400-10BC) and other warm periods.

This approach also predicts the modern grand minimum upcoming in 2020-2055. By utilising the two principal components of solar magnetic field oscillations and their summary curve, we extrapolate the solar activity backwards one hundred millennia and derive weaker oscillations with a period of 2000-2100years (a super-grand cycle) reflecting variations of magnetic field magnitude. The last super-grand minimum occurred during Maunder Minimum with magnetic field growing for 500 years (until ~2150) and decreasing for another 500 years. The most likely nature of this interaction will be discussed and used to explain long-term variations of solar magnetic field and irradiance observed from the Earth. [Emphasis Added]
Invitation Link is HERE. Link Fixed.

If there is a reader that attends this presentation please write up a summary and post in the comments.  Thanks.

Update 10-20-18:  HERE is  a link to a YouTube Interview of  Professor Valentina Zharkova


The Blue Sun: Solar Anomalies in the 1450s and 1460s

Willie Soon, PhD, Independent Scientist, on August 25, 2018, at the 36th annual meeting of Doctors for Disaster Preparedness Las Vegas gave a presentation on the Spore Minimum and in the presentation predicted the next Grand Minimum. Here is his graphic:

21st Century Minimum

Dr.Soon also presented some information on the connection between the sun and deep earthquakes. More deep earthquakes happen in the NH summer.

Summer Deep Earthquakes

I recommend you watch the video of the presentation and then I would like to hear your comments. There is a lot to think about in the presentation.

Link to video is HERE.


Measuring Solar Constant

Andy May has an excellent article at Watt’s Up With That. He asks the question and then examines the issue.

Do we know the solar output, over the past 261 years, accurately enough to say the Sun could not have changed 9.2 W/m2 or some large portion that amount? In other words, is the IPCC assumption that solar variability has a very small influence on climate valid?

Andy concludes:

In answer to the question posed at the beginning of the post, no we have not measured the solar output accurately enough, over a long enough period, to definitively say solar variability could not have caused all or a significant portion of the warming observed over the past 261 years. The most extreme reconstruction in Figure 7 (Lean, 2000), suggests the Sun could have caused 25% of the warming and this is without considering the considerable uncertainty in the TSI estimate. There are even larger published TSI differences from the modern day, up to 5 W/m2 (Shapiro, et al. 2011), (Soon, Connolly and Connolly 2015) and (Schmidt, et al. 2012). We certainly have not proven that solar variability is the cause of all or even a large portion of the warming, only that we cannot exclude it as a possible cause, as the IPCC appears to have done.

Read the full analysis How Constant is the Solar Constant HERE.


Sunspot Update for July 2018: The Sun Flatlines!

From Behind the Black, by Robert Zimmerman

Yesterday NOAA posted its monthly update of the solar cycle, covering sunspot activity for July 2018. As I do every month, I am posting it below, annotated to give it some context.

This might be the most significant month of solar activity that has been observed since Galileo. Except for two very short-lived and very weak sunspots that observers hardly noted, the Sun was blank for entire month of July. This has not happened since 2009, during the height of the last solar minimum.

What makes this so significant and unique is that it almost certainly signals the return of the next solar minimum, a return that comes more than a year early. The solar cycle the Sun is now completing has only been ten years long. It is also one of the weakest in more than a hundred years. This combination is unprecedented. In the past such a weak cycle required a long cycle, not a short one.

Read the full post with graphics HERE.

Robert discusses the Next Grand Minimums:

For almost a decade some solar scientists have predicted, based on the Sun’s recent behavior, that we are about to enter an era of little sunspot activity, with the possibility that we could be facing the first Grand Minimum since the Maunder Minimum in the 1600s. During that last grand minimum, named for the man who identified it, the Sun’s solar cycle produced almost no visible sunspots for decades. Though scientists think the eleven-year solar cycle was occurring, sunspot activity was so weak that the solar astronomers at the time, equipped with the very first telescopes, could not see it.

My emphasis added. There is more discussion in the text.

Sun Approaching 100 Days Without Spots*

[* Not continuous days, an accumulation  of blank sunspot days ]

2 July 2018 – “The Belgian department of solar physics research (SIDC) says we are about to touch 100; that is, a hundred days in which we do not see spots on our sun,” says Italian meteorologist Dr Carlo Testa.

During a time of few or no sunspots (a solar minimum) the Sun emits less energy than usual, says Dr Testa. “According to some scholars this situation could lead to climatic upheavals.”

Suffice it to recall, says Testa, that between 1645 and 1715 the most significant solar minimum of history, the Little Ice Age, occurred, bringing years and years marked by very strict winters that lasted until June.

Now several studies indicate that we’re headed into another Great Solar Minimum, says Testa. For some scholars this is only a hypothesis, but we are seeing small signals that support this idea: namely,the most powerful strat-warming ever recorded in mid-February, the very very unstable Spring, and finally this summer that continues to limp along.

In the immediate future Testa expects “a very limp and less hot summer than in past years,” and that the coming winter could also be affected by the solar minimum.

“What if the worst is to come?” asks Testa.

Scientists Have Found The ‘Missing Link’ From Sunspot Activity To Cosmic Rays-Clouds To Climate Change

By Kenneth Richard on 21. May 2018

Hailed as ‘the last piece of the puzzle’ in codifying our understanding of the mechanism(s) that cause climate changes, scientists are increasingly turning to Sun-modulated cosmic ray flux and cloud cover variations as the explanation for decadal- and centennial-scale global warming and cooling. In other words, climate changes are increasingly being attributed to natural variability, not anthropogenic activity.

A link to the full blog post is HERE. It is too long to re-post. Recommended reading, with references to past Grand Minimums.

Are we on the Cusp of the Next Minimum?

26 Apr 2018 – “Worldwide Wine Output Collapses To 60-Year Low, Sparks Fears Of Major Shortage,” says headline.

The Director-General of the International Organization of Vine and Wine, Jean-Marie Aurand, warned that global wine production collapsed in 2017, with a contraction of 8.6 percent compared with 2016. In fact, global wine output dropped to its lowest levels since 1957, primarily due to poor weather in the Eurozone which slashed production across the entire bloc.

In France, vinters reported “widespread damage in Bordeaux, Burgundy, and Champagne, with some losing their entire 2017 crop.

Here’s the full article:

H/T to Ice Age Now  Read the full report HERE.

Cosmic Rays Continue To Intensify As Historic Solar Minimum Approaches

Meteorologist Paul Dorian, Vencore, Inc.

All indications are that the upcoming solar minimum which is expected to begin in 2019 may be even quieter than the last one which was the deepest in nearly a century. One of the natural impacts of decreasing solar activity is the weakening of the ambient solar wind and its magnetic field which, in turn, allows more and more cosmic rays to penetrate the solar system. The intensification of cosmic rays can have important consequences on such things as Earth’s cloud cover and climate, the safety of our astronauts exploring in space, and lightning.


Daily observations of the number of sunspots since 1 January 1900 according to Solar Influences Data Analysis Center (SIDC). The thin blue line indicates the daily sunspot number, while the dark blue line indicates the running annual average. The recent low sunspot activity is clearly reflected in the recent low values for the total solar irradiance. Data source: WDC-SILSO, Royal Observatory of Belgium, Brussels. Last day shown: 28 February 2018. Last diagram update: 1 March 2018. (Credit

The Full article is HERE.

Anthony Watts at WUWT has some more graphical input and links to other supporting information on the

Approaching ‘grand solar minimum’ could cause global cooling



How Activity On The Sun Could Change The Economy

Forbes: Simon Constable reviews Nature’s Third Cycle: A Story of Sunspots by Arnab Rai Choudhuri.

But what has become more apparent based on more recent research from NASA is that we are now in a period of very few or no sunspots. This has coincided with the brutal winter we are going through now.

The question is whether we will enter another grand solar minimum just like the Maunder minimum which if history is a guide would mean a period of much colder weather winters and summers. More than a few experts with whom I speak regularly believe that we shall enter such a grand minimum along with the resulting bone-chilling weather.

If that happens, then there will be profound influences on the economy, including possible crop failures and rising energy use for home and workplace heating. Or in other words, expect bigger bills for food and energy. After a period in which the supply of both has been increasingly abundant then this change will likely come as a shock to many people and likely the broader global economy as well.

Read the full article HERE.



Solar Variability and Climate Change?

Why has global temperature been increasing since 1980 while solar activity has been decreasing?

A paper by Javier, edited by Andy May at WUWT.


The answer is that solar variability has multiple effects on climate with different time lags. Total Solar Irradiation variability has a direct effect on temperature within 0-2 years of ~ 0.2 °C (Tung & Camp, 2008) for the 11-year solar cycle. This is the effect accepted by all. The stratospheric effect of UV solar variability influences the North Atlantic oscillation that is lagged by 2-4 years (Scaife et al., 2013). Kobashi et al. 2015 describe a 10-40-year lag on Greenland temperature from ice cores that they attribute to the slowdown of the Atlantic Meridional Overturning Circulation and correlates with changes in the wind stress curl in the North Atlantic with a lag of 38 years in solar variability. Several studies correlating changes in tree-ring width and solar variability document a 10-20-year lag (Eichler et al., 2009; Breitenmoser et al., 2012; Anchukaitis et al., 2017).

The existence of multiple lags means that for the full effect of solar variability to be felt on climate there is a delay of ~ 20 years. The delay is due to the recruitment of slower changing atmospheric and oceanic climatic responses.

This means two things:

  • Changes over the 11-year cycle are too fast to have much impact on climate.
  • The general decline in solar activity since 1980 has been felt on climate from ~ 2000, and the low solar activity of SC24 should have a maximum effect on climate ~ 2035.

The evidence suggests that solar variability strongly influences climate change. The solar-hypothesis makes very clear predictions that are the opposite of predictions from the CO2-hypothesis. Regardless of changes in CO2 levels and emissions, the world should not experience significant warming for the period 2000-2035, and might even experience some cooling. If the prediction is correct we can assume that the solar contribution to climate is stronger than the CO2 contribution. Then more warming should take place afterwards.

Full Paper and Comments HERE.