Cold October (and now November) in perspective

Reblogged from Icecap.us

See references to Maunder and Dalton Minimums.

By Joseph D’Aleo, CCM

Starting in January 2019, unusual and at times record cold has been locked in over the north central states.

image

Though there was heat in late summer in the southeast and eastern Gulf to the Mid-Atlantic, the cold held in the north central. After a very cold spring with late snows, which significantly delayed or prevented grain planting, a cool summer followed and gave way to a very early cold shot in late September that brought early deep freezes and even record snows in the north central leading to significant crop losses.

There have been 90 all-time record lows versus just 44 all-time record highs this year. That included the all time state record low of -38F in Mount Carroll in Illinois on January 31st.

The cold central deepened in October and pushed to the east bringing very early snow into the Midwest. October saw 3680 record daily lows, 32 all time record lows for the month and no all time record monthly highs (NOAA NCEI).

image

After bringing heavy snows to the Rockies and high plains the cold rolled south with temperatures 30 to 50 degrees below normal.

image

Temperatures dropped to a record of -35F at Logan County Sink in Utah and -46F in Peter’s sink, record coldest for the U.S. for the month of October.

The temperatures the first 9 months have tracked the last 120 years well with multidecadal cycles in the ocean.

image

The cold also follows the solar activity. We are currently in a century or more quiet sun.  In the period in and following the last 11 year cycle low (2007-2011), we had brutal cold and snow here in the U.S. and Europe.

December in 2010, the Central England Temperature (longest continuous record going back to 1659), was the second coldest December.  Snow, which was forecast to be a thing of the past, instead buried the UK for long periods reminiscent of the Dalton solar Minimum of the early 1800s as evidenced by Dicken’s novels.

image

In the US, record cold and snow in the Snowmageddon Mid-Atlantic winter of 2009/10, was eclipsed with the record winters of 2013/14 and 2014/15. Which brought the coldest and snowiest winter and modern day peaks of Great Lake ice.

image

image

image

The snow in the hemisphere is increasing very rapidly and is above normal, which should expand and enhance the cold. Note how the fall record for snow extent was at record levels last fall.

image

image

Given the projection by Russian scientists and many in the west including some at NASA, we could be heading into a deep and long solar minimum like the Maunder Minimum with a major cooling. Whether it is a several decade Dalton like period or a Maunder, this is no time to abandon cheap, available energy.

image

image

Even in the warmer interlude we have enjoyed, cold weather kills 20 times as many people as hot weather, according to an international study analyzing over 74 million deaths in 384 locations across 13 countries.

image
Link

Advertisements

A Repeat of the Dalton Solar Minimum?

NASA+Solar_25

It is well known that cold and warm periods of the climate are correlated with intensive solar activity (e.g., the Medieval Warm Period), while decreases in temperature occur during periods of low solar activity (e.g., the Little Ice Age; Lean and Rind, 1999; Bond et al., 2001).

Long cold periods from 1643 to 1667 and from 1675 to 1690 that were revealed for another territory (Lyu et al., 2016; Wilson et al., 2016) coincided with the Maunder Minimum (1645–1715), an interval of decreased solar irradiance (Bard et al., 2000). The coldest year in this study (1662) was revealed in this period too. 

Source HERE.

Will Thames Freeze Again? UK Vulnerable to Cooling Catastrophe

By Vijay Jayaraj writing at CNSNews.com

[. . . ]

Studies suggest that the previous lows in solar activity—solar cycles 5 and 6 during the Dalton Minimum (1790–1830)—coincided with the Little Ice Age that disrupted the entire Northern Hemisphere. It was during this time that London’s River Thames (not far from the Parliament) froze, and agriculture in Britain and elsewhere came to a standstill.

According to recent research papers by scientists, the two coming solar cycles—25 and 26—will display much lower solar activity than the solar cycles of the Little Ice Age, with a potential period of cooling, as NASA suggests.

“The solar cycle 25 will start in the year 2021 (January) and will last till 2031 (February), while the solar cycle 26 will start in the year 2031 (March) and will last till the year 2041 (February),” said the report.
The scientists concluded, “We have also compared the activities of solar cycles 5 and 6 (Dalton minima periods) to solar cycles 25 and 26 and have observed that the other solar minimum is underway.”

Such a period could demolish the UK’s agricultural sector. It would also negatively affect agriculture in the rest of the world. There could be a complete lockdown of agriculture and a severe proven stress on the energy sector, including electricity generation, not just in Britain but throughout the Northern Hemisphere.

Warnings about the on-going solar minima should not be ignored. Yet the climate crisis movement, focusing exclusively on warming as a threat, promotes a lack of awareness of this threat.

The full article is HERE.

NASA – Next Solar Cycle will be Weakest in 200 Years

September 5, 2019 by Robert at Ice Age Now

NASA dropped this bombshell announcement in a little-heralded news release coyly entitled “Solar Activity Forecast for Next Decade Favorable for Exploration.” In other words, NASA tried to make it sound like good news.

In the release, dated 12 June 2019, NASA described the upcoming decline in solar activity as a window of opportunity for space exploration instead of acknowledging the disastrous consequences such a decline could wreak on civilization.

Here are some direct quotes from the news release:

The Sun’s activity rises and falls in an 11-year cycle. The forecast for the next solar cycle says it will be the weakest of the last 200 years. (Emphasis added) The maximum of this next cycle – measured in terms of sunspot number, a standard measure of solar activity level – could be 30 to 50% lower than the most recent one. The results show that the next cycle will start in 2020 and reach its maximum in 2025.

Sunspots are regions on the Sun with magnetic fields thousands of times stronger than the Earth’s. Fewer of them at the point of maximum solar activity means fewer dangerous blasts of radiation.

The new research was led by Irina Kitiashvili, a researcher with the Bay Area Environmental Research Institute at NASA’s Ames Research Center, in California’s Silicon Valley. It combined observations from two NASA space missions – the Solar and Heliospheric Observatory and the Solar Dynamics Observatory – with data collected since 1976 from the ground-based National Solar Observatory.

In admitting that solar activity during sunspot-cycle 25 could be the weakest in 200 years, NASA was effectively forecasting a return to Dalton Minimum (1790-1830) conditions. But the release gives no mention of the ferocious cold, no mention of the disastrous crop losses, no mention of the ensuing starvation and famine, no mention of the wars over food, no mention of the powerful earthquakes, no mention of the catastrophic volcanic eruptions during the Dalton Minimum.

NASA Paper is HERE

Some people consider the low solar activity a trigger for other catastrophic events such as the 1811-1812 New Madrid Fault Earth Quakes and 1815 eruption of Mount Tamboura.  As you can see from this chart global cooling produced some strong eruption.

Volcanic activity

I have done some investigation of the cooling triggering earthquakes and significant eruptions but could not find any smoking-gun evidence.  [Your thoughts?]

The said the real issue is global cooling, as  1-2 degrees C of cooling shortens the growing seasons and disrupts the food supply. This is a problem for a planet with more mouths to feed with every passing year.  Modern transportation can mitigate the distribution issues that plagued other grand minimum populations, but you first have to have agricultural output to distribute.  This year the growing season is going to be much shorter than last year. Your thoughts?

The Next Great Extinction Event Will Not Be Global Warming – It Will Be Global Cooling

By Allan M. R. MacRae, B.A.Sc., M.Eng., August 2019

CATASTROPHIC GLOBAL WARMING IS A FALSE CRISIS – THE NEXT GREAT EXTINCTION WILL BE GLOBAL COOLING

Forget all those falsehoods about scary global warming, deceptions contrived by wolves to stampede the sheep. The next great extinction event will not be global warming, it will be global cooling. Future extinction events are preponderantly cold: a glacial period, medium-size asteroid strike or supervolcano. Humanity barely survived the last glacial period that ended only 11,500 years ago, the blink-of–an-eye in geologic time.

Cold, not heat, is by far the greater killer of humanity. Today, cool and cold weather kills about 20 times as many people as warm and hot weather. Excess Winter Deaths, defined as more deaths in the four winter months than equivalent non-winter months, total over two million souls per year, in both cold and warm climates. Earth is colder-than-optimum for humanity, and currently-observed moderate global warming increases life spans.

I am not in agreement with all the author’s points, but it is an interesting read. Grand minimums are referenced. Some of the comments give some perspective to the author’s claims of rapid cooling.

The full post is HERE.

The Next Grand Solar Minimum is Approaching

Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale

Another paper by V. V. Zharkova, S. J. Shepherd, S. I. Zharkov & E. Popova 

Abstract

Recently discovered long-term oscillations of the solar background magnetic field associated with double dynamo waves generated in inner and outer layers of the Sun indicate that the solar activity is heading in the next three decades (2019–2055) to a Modern grand minimum similar to Maunder one. On the other hand, a reconstruction of solar total irradiance suggests that since the Maunder minimum there is an increase in the cycle-averaged total solar irradiance (TSI) by a value of about 1–1.5 Wm−2 closely correlated with an increase of the baseline (average) terrestrial temperature. In order to understand these two opposite trends, we calculated the double dynamo summary curve of magnetic field variations backward one hundred thousand years allowing us to confirm strong oscillations of solar activity in regular (11 year) and recently reported grand (350–400 year) solar cycles caused by actions of the double solar dynamo. In addition, oscillations of the baseline (zero-line) of magnetic field with a period of 1950 ± 95 years (a super-grand cycle) are discovered by applying a running averaging filter to suppress large-scale oscillations of 11 year cycles. Latest minimum of the baseline oscillations is found to coincide with the grand solar minimum (the Maunder minimum) occurred before the current super-grand cycle start. Since then the baseline magnitude became slowly increasing towards its maximum at 2600 to be followed by its decrease and minimum at ~3700. These oscillations of the baseline solar magnetic field are found associated with a long-term solar inertial motion about the barycenter of the solar system and closely linked to an increase of solar irradiance and terrestrial temperature in the past two centuries. This trend is anticipated to continue in the next six centuries that can lead to a further natural increase of the terrestrial temperature by more than 2.5 °C by 2600.

Conclusions

Until recently, solar activity was accepted to be one of the important factors defining the temperature on Earth and other planets. In this paper we reproduced the summary curve of the solar magnetic field associated with solar activity5,6 for the one hundred thousand years backward by using the formulas describing the sum of the two principal components found from the full disk solar magnetograms. In the past 3000 years the summary curve shows the solar activity for every 11 years and occurrence of 9 grand solar cycles of 350–400 years, which are caused by the beating effects of two magnetic waves generated by solar dynamo at the inner and outer layers inside the solar interior with close but not equal frequencies6.

The resulting summary curve reveals a remarkable resemblance to the sunspot and terrestrial activity reported in the past millennia including the significant grand solar minima: Maunder Minimum (1645–1715), Wolf minimum (1200), Oort minimum (1010–1050), Homer minimum (800–900 BC) combined with the grand solar maxima: the medieval warm period (900–1200), the Roman warm period (400–10BC) etc. It also predicts the upcoming grand solar minimum, similar to Maunder Minimum, which starts in 2020 and will last until 2055.

A reconstruction of solar total irradiance suggests that there is an increase in the cycle-averaged total solar irradiance (TSI) since the Maunder minimum by a value of about 1–1.5 Wm−2 27. This increase is closely correlated with the similar increase of the average terrestrial temperature26,43. Moreover, from the summary curve for the past 100 thousand years we found the similar oscillations of the baseline of magnetic field with a period of 1950 ± 95 years (a super-grand solar cycle) by filtering out the large-scale oscillations in 11 year cycles. The last minimum of a super-grand cycle occurred at the beginning of Maunder minimum. Currently, the baseline magnetic field (and solar irradiance) are increasing to reach its maximum at 2600, after which the baseline magnetic field become decreasing for another 1000 years.

The oscillations of the baseline of solar magnetic field are likely to be caused by the solar inertial motion about the barycentre of the solar system caused by large planets. This, in turn, is closely linked to an increase of solar irradiance caused by the positions of the Sun either closer to aphelion and autumn equinox or perihelion and spring equinox. Therefore, the oscillations of the baseline define the global trend of solar magnetic field and solar irradiance over a period of about 2100 years. In the current millennium since Maunder minimum we have the increase of the baseline magnetic field and solar irradiance for another 580 years. This increase leads to the terrestrial temperature increase as noted by Akasofu26 during the past two hundred years. Based on the growth rate of 0.5 C per 100 years26 for the terrestrial temperature since Maunder minimum, one can anticipate that the increase of the solar baseline magnetic field expected to occure up to 2600 because of SIM will lead, in turn, to the increase of the terrestrial baseline temperature since MM by 1.3 °C (in 2100) and, at least, by 2.5–3.0 °C (in 2600).

Naturally, on top of this increase of the baseline terrestrial temperature, there are imposed much larger temperature oscillations caused by standard solar activity cycles of 11 and 350–400 years and terrestrial causes. The terrestrial temperature is expected to grow during maxima of 11 year solar cycles and to decrease during their minima. Furthermore, the substantial temperature decreases are expected during the two grand minima47 to occur in 2020–2055 and 2370–24156, whose magnitudes cannot be yet predicted and need further investigation. These oscillations of the estimated terrestrial temperature do not include any human-induced factors, which were outside the scope of the current paper.

Continue reading HERE

Keep your warm coat handy the climate is about to get interesting.

The Setup is like 1315

Guest Commentary by David Archibald at Watts Up With That

The area planted for corn and soybeans this season is well below historic averages. This was mostly due to waterlogged fields and flooding which precluded planting. The planting windows for corn and soybeans are now closed. The USDA crop progress reports provide weekly updates by state. For example this is the state of the corn crop in Indiana to Monday June 17:

clip_image002

Figure 1: Indiana corn crop progress to Monday June 17.

The emerged crop is one month behind where it was in 2018. Which means that maturity will be one month later at best, assuming that the rest of the summer isn’t abnormally cold.

Figure 2 shows that the same situation in soybeans in Indiana:

clip_image004

Figure 2: Indiana soybean crop progress to Monday June 17.

The current expectation is that the US corn crop will be down 30% on 2018 which will push the price to about $9.00 per bushel at harvest. What could make the situation a lot worse is an early frost. The Corn Belt did warm slightly over the last 100 years due to the high solar activity of the second half of the 20th century. This is shown by the cumulative growing degree days (GDD) of the first decade of the 20th century (blue lines) compared to the first decade of the 21st century (red lines) in Figure 3 for Whitestown, Indiana:

clip_image006

Figure 3: Cumulative GDD for Whitestown, Indiana

Normally, for the 21st century, the corn crop is in the ground by April 27 and the crop has reached maturity with 2,500 GDD well before the normal first frost date for Whitestown of October 10. The earliest recorded date for Whitestown is September 3. That was in 1908. If that is repeated in 2019 the crop will be only 80% through its growth cycle. Yield and quality will be well down and the total crop may be 50% or less of the 2018 level.

The US will be able to feed itself but at much higher prices. Currently some 40% of the corn crop goes to ethanol production and this could be redirected to animal feed without too much trouble. But protein production would still be well down. Each 56 lb bushel of corn used in ethanol production results in 18 lbs of dried distillers grains (DDG) containing the protein. This is used as a feed supplement to pigs, chickens and cattle. Both pigs and chickens have a 25% conversion efficiency of vegetable protein to animal protein. The global warmers want us to adopt vegetarianism in order to save the planet. The public is going to get a taste of that future coming up soon. However animal fat is essential for infant neurological development and brain function so we can’t go completely vegetarian.

What is happening in the Corn Belt is a mini version of the transition from the Medieval Warm Period to the Little Ice Age. The population of Europe exploded in benign conditions of the Medieval Warm Period from 1000 AD to 1300 AD, reaching population levels that weren’t matched again until the 19th century. In fact parts of rural France have less population today than at the beginning of the 14th century.

The breakover from the Medieval Warm Period to the Little Ice Age in Europe had sustained periods of bad weather characterised by severe winters and rainy and cold summers. The Great Famine of 1315 – 1317 started with bad weather in the spring of 1315. Crop failures lasted through 1316 until the summer of 1317. The population decline over the two years is thought to be about 10%, associated with “extreme levels of crime, disease, mass death, cannibalism and infanticide.” These conditions may be less in the Mormons amongst us who are instructed to keep one year’s worth of food in stock.

The Modern Warm Period ended in 2006. Current solar activity is back to levels of the Little Ice Age. To paraphrase Santayana, those who don’t remember history are condemned to being surprised and unprepared when it repeats itself.

A large and increasing number of nations are feeding their population growth with imported grain. That is going to be become more expensive to continue, with or without an early frost in the Corn Belt. Global warming hysteria has been a consequence of very benign conditions for the OECD countries where it is concentrated. That angst will be supplanted by more basic concerns.

David Archibald is the author of American Gripen: The Solution to the F-35 Nightmare

I am going to create a Google Alert to track early frost reports. I will share the results.

When will people realize that. . .

 

Ed Hoskins

  1. The modern short pulse of beneficial Global warming stopped 20 years ago and recent global temperatures are now stable or declining.
  2. The last millennium 1000 – 2000 AD was the coldest of our current Holocene interglacial and the world has already been cooling quite rapidly for the last 3000 years.
  3. At 11,000 years our Holocene interglacial, responsible for all man-kind’s advances, is reaching its end.
  4. The weather gets worse in colder times.
  5. The world will very soon (in geological time), revert to a true glaciation, again resulting in mile high ice sheets over New York.

Our current beneficial, warm Holocene interglacial has been the enabler of mankind’s civilization for the last 10,000 years.

The congenial climate of the Holocene epoch spans from mankind’s earliest farming to the scientific and technological advances of the last 100 years.

screen-shot-2018-10-08-at-15.49.41

However all the Northern Hemisphere Ice Core records  from Greenland show:

  • the last millennium 1000AD – 2000AD has been the coldest millennium of the entire Holocene interglacial.
  • each of the notable high points in the Holocene temperature record, (Holocene Climate Optimum – Minoan – Roman – Medieval – Modern), have been progressively colder than the previous high point.
  • for its first 7-8000 years the early Holocene, including its high point “climate optimum”, had virtually flat temperatures, an average drop of only ~0.007 °C per millennium.
  • but the more recent Holocene, since a “tipping point” at ~1000BC, has seen a temperature diminution at more than 20 times that earlier rate at about 0.14 °C per millennium.
  • the Holocene interglacial is already 10 – 11,000 years old and judging from the length of previous interglacials the Holocene epoch should be drawing to its close: in this century, the next century or this millennium.
  • the beneficial warming at the end of the 20th century to the Modern high point has been transmuted into the “Great Man-made Global Warming Alarm”.
  • eventually, this late 20th-century temperature blip will come to be seen as just noise in the system in the longer term progress of comparatively rapid cooling over the last 3000+ years.
  • other published Greenland Ice Core records as well as GISP2, (NGRIP1, GRIP) corroborate this finding. They also exhibit the same pattern of a prolonged relatively stable early Holocene period followed by a subsequent much more rapid decline in the more recent (3000 years) past.

When considering the scale of temperature changes that alarmists anticipate because of Man-made Global Warming and their view of the disastrous effects of additional Man-made Carbon Dioxide emissions in this century, it is useful to look at climate change from a longer term, century by century and even on a millennial perspective.

The much vaunted and much feared “fatal” tipping point of +2°C would only bring Global temperatures close to the level of the very congenial climate of “the Roman warm period”.

If it were possible to reach the “horrendous” level of +4°C postulated by Warmists, that extreme level of warming would still only bring temperatures to about the level of the previous Eemian maximum, a warm and abundant epoch when hippopotami thrived in the Rhine delta.

screen-shot-2015-06-06-at-12-34-16

Read the full paper HERE

The Little Ice Age: What Happened Around the World

Between 1300 and 1850, the Earth experienced a Little Ice Age whose cause to this day is not known.

A blog post at Interesting Engineering has more details including the consequences and some paintings from the period. The causes listed are interesting:

Causes

The causes of the LIA are still not known, while potential candidates are reduced solar output, changes in atmospheric circulation, and volcanism.

Low sunspot activity is associated with lower solar output, and two periods of unusually low sunspot activity occurred during the Little Ice Age: the Spörer Minimum (1450–1540) and the Maunder Minimum (1645–1715), which is named for astronomer E.W. Maunder who discovered the absence of sunspots during that period. Both of these coincide with the coldest years of the LIA in parts of Europe.

Another possible candidate is a reversal of the North Atlantic Oscillation (NAO). This is a large-scale atmospheric-circulation pattern over the North Atlantic and adjacent areas. During its “positive” phase, the track of North Atlantic storms is centered over the British Isles and Northern Europe. During its “negative” phase, cold Arctic air from Russia moves over northern Europe.

A final candidate is volcanic eruptions which propel gases and ash into the stratosphere, where they reflect incoming sunlight. In 1783, Iceland’s Laki volcano erupted, and in 1815, the Tambora volcano on Sumbawa Island erupted.

I am voting for low sunspot activity.  Your thoughts?

Henrik Svensmark: FORCE MAJEURE The Sun’s Role in Climate Change

I am still studying this paper but wanted to share and get your feedback

Executive Summary

Over the last twenty years there has been good progress in understanding the solar influ- ence on climate. In particular, many scientific studies have shown that changes in solar activ- ity have impacted climate over the whole Holocene period (approximately the last 10,000 years). A well-known example is the existence of high solar activity during the Medieval Warm Period, around the year 1000 AD, and the subsequent low levels of solar activity during the cold period, now called The Little Ice Age (1300–1850 AD). An important scientific task has been to quantify the solar impact on climate, and it has been found that over the eleven- year solar cycle the energy that enters the Earth’s system is of the order of 1.0–1.5 W/m2. This is nearly an order of magnitude larger than what would be expected from solar irradiance alone, and suggests that solar activity is getting amplified by some atmospheric process.

Three main theories have been put forward to explain the solar–climate link, which are:
• solarultravioletchanges
• theatmospheric-electric-fieldeffectoncloudcover
• cloudchangesproducedbysolar-modulatedgalacticcosmicrays(energeticparticles originating from inter stellar space and ending in our atmosphere).

Significant efforts has gone into understanding possible mechanisms, and at the moment cosmic ray modulation of Earth’s cloud cover seems rather promising in explaining the size of solar impact. This theory suggests that solar activity has had a significant impact on climate during the Holocene period. This understanding is in contrast to the official consensus from the Intergovernmental Panel on Climate Change, where it is estimated that the change in solar radiative forcing between 1750 and 2011 was around 0.05 W/m2, a value which is en- tirely negligible relative to the effect of greenhouse gases, estimated at around 2.3 W/m2. However, the existence of an atmospheric solar-amplification mechanism would have im- plications for the estimated climate sensitivity to carbon dioxide, suggesting that it is much lower than currently thought.

In summary, the impact of solar activity on climate is much larger than the official consen- sus suggests. This is therefore an important scientific question that needs to be addressed by the scientific community.

Full paper at the GWPF website HERE.