Are we on the Cusp of the Next Minimum?

26 Apr 2018 – “Worldwide Wine Output Collapses To 60-Year Low, Sparks Fears Of Major Shortage,” says zerohedge.com headline.

The Director-General of the International Organization of Vine and Wine, Jean-Marie Aurand, warned that global wine production collapsed in 2017, with a contraction of 8.6 percent compared with 2016. In fact, global wine output dropped to its lowest levels since 1957, primarily due to poor weather in the Eurozone which slashed production across the entire bloc.

In France, vinters reported “widespread damage in Bordeaux, Burgundy, and Champagne, with some losing their entire 2017 crop.

Here’s the full article:
https://www.zerohedge.com/news/2018-04-25/worldwide-wine-output-collapses-60-year-low-sparks-fears-major-shortage

H/T to Ice Age Now  Read the full report HERE.

Advertisements

Solar Variability and Climate Change?

Why has global temperature been increasing since 1980 while solar activity has been decreasing?

A paper by Javier, edited by Andy May at WUWT.

Conclusion:

The answer is that solar variability has multiple effects on climate with different time lags. Total Solar Irradiation variability has a direct effect on temperature within 0-2 years of ~ 0.2 °C (Tung & Camp, 2008) for the 11-year solar cycle. This is the effect accepted by all. The stratospheric effect of UV solar variability influences the North Atlantic oscillation that is lagged by 2-4 years (Scaife et al., 2013). Kobashi et al. 2015 describe a 10-40-year lag on Greenland temperature from ice cores that they attribute to the slowdown of the Atlantic Meridional Overturning Circulation and correlates with changes in the wind stress curl in the North Atlantic with a lag of 38 years in solar variability. Several studies correlating changes in tree-ring width and solar variability document a 10-20-year lag (Eichler et al., 2009; Breitenmoser et al., 2012; Anchukaitis et al., 2017).

The existence of multiple lags means that for the full effect of solar variability to be felt on climate there is a delay of ~ 20 years. The delay is due to the recruitment of slower changing atmospheric and oceanic climatic responses.

This means two things:

  • Changes over the 11-year cycle are too fast to have much impact on climate.
  • The general decline in solar activity since 1980 has been felt on climate from ~ 2000, and the low solar activity of SC24 should have a maximum effect on climate ~ 2035.

The evidence suggests that solar variability strongly influences climate change. The solar-hypothesis makes very clear predictions that are the opposite of predictions from the CO2-hypothesis. Regardless of changes in CO2 levels and emissions, the world should not experience significant warming for the period 2000-2035, and might even experience some cooling. If the prediction is correct we can assume that the solar contribution to climate is stronger than the CO2 contribution. Then more warming should take place afterwards.

Full Paper and Comments HERE.

Forecast for Solar Cycle 25

James A. Marusek has a long, long quest post at Watts Up With That on the future of solar cycle 25 HERE. I found some of the comments on the post most interesting and deserve your attention.  Not everyone agrees with the author.

I predict that the intensity of Solar Cycle 25 will be fairly similar to Solar Cycle 24. I base this prediction on two observations:

1. The pattern seen in Solar Cycles 22 through 25 matches fairly close to the historical pattern seen in Solar Cycles 3 through 6. Refer to Figure 3. Solar Cycle 4 to Solar Cycle 7 corresponded to a period known as the Dalton Minimum. The Dalton Minimum was a time of minimal sunspots, a series of weak solar cycles; but it is not weak enough to be described as a Solar Grand Minima.

2. Solar cycles come in pairs. A solar cycle is in reality a half cycle. It takes two solar cycles to complete one full cycle. In one solar cycle, the magnetic polarity of the sun faces north and in the next it faces south. At the end of 2 solar cycles the sun is back to its original starting point. So they are two different sides of the same coin. The intensity of each half cycle is approximately equal.

In my opinion, the most interesting part of the upcoming solar cycle is the period of minimal sunspotsÅ rather than the period of maximum sunspots because the minimum represents the extreme, the primary actor that foreshadows weather events. When I compared this upcoming period of minimal sunspots with the corresponding period of minimal sunspots during the Dalton Minimum (between solar cycle 5 and 6), I made the following predictive observation. The upcoming period of minimal sunspots will extend from the winter of 2016/17 to the winter of 2024/25. This period is analogous to the similar Dalton Minimum timeframe from the winter of 1806/07 to the winter of 1814/15.

I predict this upcoming period of minimal sunspots shall be longer and deeper than the last one. The changes during this solar minimum shall be more pronounced than during the last solar minimum. These parameters include sunspot numbers, Average Magnetic Planetary Index (Ap index), Galactic Cosmic Rays (GCRs) flux rates, heliosphere volume, the sun’s interplanetary magnetic field strength, solar wind pressure, solar Ultra Violet (UV) flux rate, Earth’s thermosphere volume, solar radio flux per unit frequency at a wavelength of 10.7 cm, and the latitude of Noctilucent Clouds (NLC) sightings.

The full scope of this long article is HERE.

Longer winters are coming in reality and will partially blunt global warming for 50 years?

Reduced sunspot activity has been observed and indicates the sun is heading into a 50 year reduced solar activity similar to what happened in the mid-17th century.

A team of scientists led by research physicist Dan Lubin at Scripps Institution of Oceanography at the University of California San Diego has created for the first time an estimate of how much dimmer the Sun should be when the next minimum takes place.

There is a well-known 11-year cycle in which the Sun’s ultraviolet radiation peaks and declines as a result of sunspot activity. During a grand minimum, Lubin estimates that ultraviolet radiation diminishes an additional seven percent beyond the lowest point of that cycle. His team’s study, “Ultraviolet Flux Decrease Under a Grand Minimum from IUE Short-wavelength Observation of Solar Analogs,” appears in the publication Astrophysical Journal Letters and was funded by the state of California.

“Now we have a benchmark from which we can perform better climate model simulations,” Lubin said. “We can therefore have a better idea of how changes in solar UV radiation affect climate change.”

Lubin and colleagues David Tytler and Carl Melis of UC San Diego’s Center for Astrophysics and Space Sciences arrived at their estimate of a grand minimum’s intensity by reviewing nearly 20 years of data gathered by the International Ultraviolet Explorer satellite mission. They compared radiation from stars that are analogous to the Sun and identified those that were experiencing minima.

The reduced energy from the Sun sets into motion a sequence of events on Earth beginning with a thinning of the stratospheric ozone layer. That thinning, in turn, changes the temperature structure of the stratosphere, which then changes the dynamics of the lower atmosphere, especially wind and weather patterns. The cooling is not uniform. While areas of Europe chilled during the Maunder Minimum, other areas such as Alaska and southern Greenland warmed correspondingly.

Lubin and other scientists predict a significant probability of a near-future grand minimum because the downward sunspot pattern in recent solar cycles resembles the run-ups to past grand minimum events.

Wait, wait for it, here it is, the required global warming clamoring:

Thus, a main conclusion of the study is that “a future grand solar minimum could slow down but not stop global warming.”

The required statements in every climate study to assure publication.

Bottom line: Another grand minimum is coming, prepare for it!

The rest of the story is HERE.

Three New (2018) Papers Link Modern Warming And Past Cooling Periods To High, Low Solar Activity

More evidence for grand minimums the Maunder and Dalton.

1. Oliva et al., 2018

Cold period during 1645–1706 (Maunder solar minimum). Cold period during 1810–1838 (Dalton solar minimum). Warm period during the mid-20th and 21st centuries (modern solar maximum).

2. Ukhvatkina et al., 2018

It is well known that cold and warm periods of the climate are correlated with intensive solar activity (e.g., the Medieval Warm Period), while decreases in temperature occur during periods of low solar activity (e.g., the Little Ice Age; Lean and Rind, 1999; Bond et al., 2001).

Lockwood et al., 2018

Space climate and space weather over the past 400 years: 2. Proxy indicators of geomagnetic storm and substorm occurrence

H/T to Kenneth Richard at the No Tricks Zone.
http://notrickszone.com/2018/01/22/3-new-2018-papers-link-modern-warming-and-past-cooling-periods-to-high-low-solar-activity/#sthash.dqVHEoCy.dpbs

7 New (2017) Papers Forecast Global Cooling, Another Little Ice Age Will Begin Soon

Kenneth Richards at No Tricks Zone

During 2017, 120 papers linking historical and modern climate change to variations in solar activity and its modulators (clouds, cosmic rays) have been published in scientific journals.

It has been increasingly established that low solar activity (fewer sunspots) and increased cloud cover (as modulated by cosmic rays) are highly associated with a cooling climate.

In recent years, the Earth has unfortunately left a period of very high solar activity, the Modern Grand Maximum. Periods of high solar activity correspond to multi-decadal- to centennial-scale warming.

Solar scientists are now increasingly forecasting a period of very low activity that will commence in the next few years (by around 2020 to 2025). This will lead to climate cooling, even Little Ice Age conditions.

Thirteen recently-published papers, seven new papers, forecasting global cooling are listed HERE: References to Dalton and Maunder Minimums.

 

Cosmic Rays Modulate Cloud Cover

A new paper by Henrik Svensmark in Nature Communications.

The hypothesis in a nutshell

• Cosmic rays, high-energy particles raining down from exploded stars, knock electrons out of air molecules. This produces ions, that is, positive and negative molecules in the atmosphere.

• The ions help aerosols – clusters of mainly sulphuric acid and water molecules – to form and become stable against evaporation. This process is called nucleation. The small aerosols need to grow nearly a million times in mass in order to have an effect on clouds.

• The second role of ions is that they accelerate the growth of the small aerosols into cloud condensation nuclei – seeds on which liquid water droplets form to make clouds. The more ions the more aerosols become cloud condensation nuclei. It is this second property of ions which is the new result published in Nature Communications.

• Low clouds made with liquid water droplets cool the Earth’s surface.

• Variations in the Sun’s magnetic activity alter the influx of cosmic rays to the Earth.

• When the Sun is lazy, magnetically speaking, there are more cosmic rays and more low clouds, and the world is cooler.

• When the Sun is active fewer cosmic rays reach the Earth and, with fewer low clouds, the world warms up.

• The implications of the study suggests that the mechanism can have affected:

• The climate changes observed during the 20th century

• The coolings and warmings of around 2°C that have occurred repeatedly over the past 10,000 years, as the Sun’s activity and the cosmic ray influx have varied.

• The much larger variations of up to 10°C occurring as the Sun and Earth travel through the Galaxy visiting regions with varying numbers of exploding stars.

More details at WUWT.

Historically Quiet Sun Headed Towards Next Solar Minimum

by Meteorologist Paul Dorian, Vencore, Inc.

Overview

Solar cycle 24 has turned out to be historically weak with the lowest number of sunspots since cycle 14 peaked more than a century ago in 1906 and by some measures, it is the third weakest since regular observations began around 1755. This historically weak solar cycle continues a weakening trend in solar irradiance output since solar cycle 21 peaked around 1980 and the sun is fast-approaching the next solar minimum. The last solar minimum lasted from 2008 to 2009 and the sun was as quiet during that time as it has been since 1978. The sun is likely to enter the next solar minimum phase within three years or so. The sun has been spotless for 26% of the time in 2017 (90 days) and the blank look should increase in frequency over the next couple of years leading into the next solar minimum.

The importance of the sun

The sun is the main driver of all weather and climate on Earth and without it, life on Earth would not exist. The sun’s output energy is not constant, however, as it varies over the course of about 11 years which is the average time period of a solar cycle (a.k.a., sunspot cycle), typically taking about 5 1/2 years to move from the quieter period of solar minimum to the more turbulent solar maximum phase. Over the course of one solar cycle, the sun’s emitted energy varies on average by about 0.1 percent. That may not sound like a lot, but the sun emits a large amount of energy – 1,361 watts per square meter – and fluctuations of just a tenth of a percent can affect Earth.

Sun_spots_count

The accumulated sunspot anomaly from the mean of the previous 23 cycles – 107 months into the cycle. Source

Third weakest solar cycle since 1755

Solar cycle 24 began in 2008 which puts us about nine years into the current cycle. An analysis of the current solar cycle (#24) finds it to be the third weakest since 1755 in terms of accumulated sunspot number anomalies from the mean value at this stage of the solar cycle. The mean value is noted at zero and solar cycle 24 is running 4048 spots less than the mean at the time of the study. In fact, the researchers claim that there have been only two weaker cycles since systematic observations began in 1755 – solar cycle 5 which began in April 1798 and solar cycle 6 which ended in May 1823 – both of these occurred during the extended period of low solar activity known as the “Dalton Minimum”. The seven cycles preceded by solar cycle 24 actually had more sunspots than the mean.

The rest of the Article is HERE. Dorian discusses the decline in solar irradiance over the last 40 years and new Space Station energy sensors.

 

Solar minimums may be final piece of puzzle in fall of Western Civilisation

Sam Khoury writing in the Nation

[ooo]

By the 1st century BC, Rome was the most advanced and powerful civilisation on Earth and Romans’ material wealth was skyrocketing. Men and women are increasingly less interested in marriage and no-fault divorce is enacted. Birth rates start to decline below the replacement rate. The citizen soldiers are eventually replaced with professional soldiers who expect compensation and are loyal to the military itself, not the state. As the empire expands in a series of wars of choice it is becomes increasingly multicultural thanks to new citizens from conquered territories. Their loyalty is in question but Rome depends on them as mercenaries to defend the declining state. The government and the military industrial complex replace the private sector as the sole entity responsible for everyone’s well-being. There is moral decay and brutality as Julius Caesar brags about killing one million Gauls. This period could be compared our own world since 1970. By the 400s Rome is being pillaged by Visigoths and Vandals, who ensure it never makes it to the 500s.

However there was something else occurring in the 400s that wasn’t happening in the preceding centuries. Although corruption and immorality were rife, the scientific and historical record shows the climate cooled but, more destructively, it became erratic. Long dry conditions were interrupted by intense deluges. Unseasonal spells of cold weather became the norm. Although solar activity records only date back to the 1600s, these conditions were almost certainly the result of a combination of low solar activity and high volcanic activity – much like the post-medieval warm period that saw solar minimums like the so-called Maunder and Dalton and large volcanic eruptions like the Tambora which, combined with the Dalton, created freezing summers. The result during the 400s was rising food prices, which along with the other factors created deep social dissatisfaction as the economy faltered.

There are proposals on the table to turn the Afghani war over to mercenaries and bring out troops home to a land were middle-class citizens are questioning the role of government and wealth disparity created by robotic and AI technology is growing.  We are becoming more like the Roman Empire, dropping birth rates, fewer marriages, and more debauchery.  Moral decay and fear of the government rampant.  But a significant change in the climate, a highly erratic climate of droughts and floods destroyed the food supply and that was the final blow to the Roman Empire.  Is this or fate?

Enter the monkey in the wrench. After 200 years of healthy solar maximums, solar activity has been plummeting since 2010 and the first solar minimum will hit bottom around 2021. By the 2030s solar physicists now reckon that a grand solar minimum will consume most of the rest of the century. Volcanic activity has also been on the increase and more is expected as eruptions occur most often during solar cycle peaks or at solar minimums. In previous articles published in this newspaper I chronicled increasingly intense and erratic weather patterns that have coincided with the lower solar activity since 2010. The latest include a cold front that descended on the US Midwest in late June dropping temperatures to near freezing, and recent snowfall 200 kilometres south of Moscow in Tarttarastran. Wheat futures immediately rose 6 per cent. At this time the world takes cheap foodstuffs for granted. A change of this reality in the future could shake the global world order to its foundations.

Full Article in HERE.

 

New Study By German Physicists Concludes We Can Expect Climate Cooling For Next 50 Years!

By P Gosselin at the No Tricks Zone

German physicists: “CO2 plays only minor role for global climate”

In a just published study in The Open Atmospheric Science Journal here, German scientists Horst-Joachim Lüdecke and Carl-Otto Weiss have used a large number of temperature proxies worldwide to construct a global temperature mean over the last 2000 years, dubbed G7, in order to find out more about the sun’s role on climate change.

Their results drop a huge surprise on the laps of scientists who have long believed the earth is warming due to human-emitted CO2.

The analysis by the German scientists shows the strongest climate cycle components as 1000, 460, and 190-year periods. The G7 global temperature extrema coincide with the Roman, Medieval, and present optima, as well as the well-known minimum of AD 1450 during the Little Ice Age.

Correlation 0.84

Using further complex analyses, they constructed a representation of G7, which shows a remarkable Pearson correlation of 0.84 with the 31-year running average of G7.

The authors used extensive local temperature proxy data [2 – 6] together with Britain’s Hadley CRU temperature records since 1870 and the recent satellite measurements, and combined them to make up the global temperature time series G7 for the last 2000 years.

Luedecke_1
In accordance to the definition of climate, the blue curve in the paper’s Fig. 3, shown above, depicts the climate history as the 30-year running average of the grey curve. Noteworthy, the historically known temperature extrema are well reproduced by the blue climate curve: The Roman Optimum (~0 AD), the Medieval Optimum (~1000 AD), the Present Optimum, as well as the Little Ice Age (~1500 AD),

Also the pronounced minimum of 1450 AD, when the vines in southern France were killed by cold. Also clearly shown by the climate curve is the warming from 1850 to 1995.

The detailed analysis of the local records show in general a multitude of peaks, the authors say, and the G7 however shows only 3 dominant peaks, which correspond to cycles known from local studies, of approx. 1000, 500, 200-year periods. The combination of local records to a global record apparently averages out local cycles and emphasizes global cycles.

The sum of these three dominant cycles (red curve in Fig. 3) reproduces the measured climate (blue curve in Fig. 3) with a remarkable correlation of 0.84.

In particular the sum of the three cycles shows the temperature increase from 1850 to 1995 as a result of the three natural cycles, the German researchers say, adding: “Thus one can conclude that CO2 plays only a minor role (if any) for the global climate.”

Lüdecke and Weiss note that the present maximum of the cycle sum corresponds well with the world temperature stagnation since 1995 AD, the stagnation unexplained by current climate models. As the dominant cycles have persisted for an extended time, one can assume that they will persist for the near future. They write: “This allows to predict cooling until 2070 AD.”

References are HERE.