Cooling Ocean Low Sunspot Signal?

Screen Shot 2019-08-10 at 11.45.15 AM

Joe Bastardi, WeatherBELL Metrologist, had an interesting comment during his Saturday Summary this morning. He was pointing to the broad cooling in the Southern Hemisphere oceans.  Joe suggests this cooling could be a signal of the low sunspot activity.  Stay tuned, we could see more ocean cooling. 


The Sun’s Weather Cycle May Start in ‘Tsunamis,’ End with ‘Terminators’

By Passant Rabie ar Science & Astronomy 

A tsunami of plasma rushes through the sun before a new sunspot cycle begins


An image of the sun in ultraviolet light showing a string of active regions near the Sun’s equator over about 36 hours. (Image: © NASA)

Astronomers may have finally figured out what causes the sun’s 11-year cycle of activity, and it involves a “tsunami” of magnetic fields. 

The sun, like other stars, goes through a cycle marked by a change in magnetic activity, levels of radiation, and the number and size of sunspots. While our sun’s 11-year cycle was discovered more than a century ago, predicting exactly when one cycle ends and a new one begins has been an ongoing challenge. 

A pair of related studies have mapped out the sun’s activity over the course of 140 years, looking for clues about the solar cycle that are visible on the surface. By looking at the way bright flashes of ultraviolet light migrate across the sun’s surface, the researchers discovered that the sun’s mysterious 11-year cycle may be marked by a “terminator” event that ends one cycle and a “tsunami” of magnetic fields that initiates a new one. Those bright flickers of ultraviolet light and the sun’s magnetic fields appear to drive the cycle itself, and monitoring those flashes could help scientists predict when a new cycle will begin.

Continue reading HERE to see the interactive graphics.

Galactic Cosmic-Rays Research Rains On Man-Made Climate Change Parade

A pair of new international studies which punched holes in the absoluteness of man-made climate change have gotten little-to-no attention in the corporate media.

Researchers from Kobe University in Japan found that high-energy particles from space known as galactic cosmic rays affect the Earth’s climate by increasing cloud cover, causing an “umbrella effect.”

A second study, a paper published by researchers from the University of Turku in Finland, concluded that even though observed changes in the climate are real, the effects of human activity on these changes are insignificant. Such findings create cognitive dissonance for celebrity and media actors committed to the narrative that human behavior is killing the planet.

“We have to recognize that the anthropogenic climate change does not exist in practice,” the study concluded.

Professor Masayuki Hyodo, who led the research team at Kobe University, said: “The Intergovernmental Panel on Climate Change (IPCC) has discussed the impact of cloud cover on climate in their evaluations, but this phenomenon has never been considered in climate predictions due to the insufficient physical understanding of it.”

Professor Hyodo continued: “This study provides an opportunity to rethink the impact of clouds on climate. When galactic cosmic rays increase, so do low clouds, and when cosmic rays decrease clouds do as well, so climate warming may be caused by an opposite-umbrella effect. The umbrella effect caused by galactic cosmic rays is important when thinking about current global warming as well as the warm period of the medieval era.”

Continue reading HERE.

During a Grand Minimum, there are fewer sunspots and more cosmic rays increasing cloud cover, reducing temperatures by 1-2 degrees C. This temperature reduction shortens the growing season by 10 days for every 1/2 a degree according to some estimates.  On the other hand, fewer cosmic rays would increase warmth and extend growing seasons allowing agricuture at higher latitude, expanding the global food supply.  This is why we monitor sunspots and cosmic rays at the Next Grand Minimum.

The strongest summer jet stream ever observed over the Pacific Northwest.

Reposted from the  Cliff Mass Weather and Climate Blog

An extraordinary weather event has been occurring above our heads during the past 24-hour.   A record that was not only broken, but shattered to little pieces.

The strongest summer jet stream ever observed over the Pacific Northwest.  

The jet stream is a narrow current of strong winds in the upper troposphere (roughly 25,000 ft to 35,000 ft above sea level).   It is often the conduit for storms and is associated with a large temperature gradient (change in temperature with horizontal distance) in the middle and lower troposphere.   Winds in the jet stream are westerly (from the west) and aircraft like to fly in the jet stream going east, while avoiding it going west.   You are now Jet Steam certified!

The ECMWF 12-h forecast for 5 AM this morning for the wind speed at the 250 hPa pressure level (about 35,000 ft) clearly shows the jet stream, with the orange/red colors being the strongest winds.

This is a HUGE and very zonal (east-west oriented) jet stream…as shown by the next map at the same time.  This looks like January, not July.

But now I will really impress you. 

The wind this morning at the radiosonde site at Quillayute (UIL) was 140 knots (161 mph) at the 250 hPa level (again around 35,000 ft).   This is amazingly fast for this time of the year.

The plot below shows the climatology of the winds at this level throughout the year at this location, with the red lines being the all-time record for each date (the black lines are average winds for the date, blue lines, the record low winds).   Vertical soundings at Quillayute go back to the late 1960s…so we are talking about a half-century of observations.   The previous record was around 110 knots…so the 140 knots observed today absolutely shattered the record.     In fact, the wind over us right now is greater then the records for any date from April 1 to mid-October.

Record, but lesser winds, are being observed at the next upper air station to the south:  Salem, Oregon (see below)

A truly unusual event.   And one that should not be pinned on global warming.  In fact, several of the global warming jet stream papers (e.g., by Jennifer Francis and others) suggest that global warming will bring a weak and wavy jet stream.  This is just the opposite.

Reading climate history during Grand Minimums, there is a plethora of stories, journal entries and letters written about unusual climate activity.  This could just another example.  We just have better detection tools today, than the speed of the clouds moving over head.

Cosmic Ray Update: New Results from the Moon

By Dr Tony Phillips

July 16, 2019: Note to astronauts: 2019 is not a good year to fly into deep space. In fact, it’s shaping up to be one of the worst of the Space Age.

The reason is, the solar cycle. One of the deepest Solar Minima of the past century is underway now. As the sun’s magnetic field weakens, cosmic rays from deep space are flooding into the solar system, posing potential health risks to astronauts.

NASA is monitoring the situation with a radiation sensor in lunar orbit. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) has been circling the Moon on NASA’s Lunar Reconnaissance Orbiter spacecraft since 2009. Researchers have just published a paper in the journal Space Weather describing CRaTER’s latest findings.


“The overall decrease in solar activity in this period has led to an increased flux of energetic particles, to levels that are approaching those observed during the previous solar minimum in 2009/2010, which was the deepest minimum of the Space Age,” write the authors, led by Cary Zeitlin of NASA’s Johnson Space Flight Center. “The data have implications for human exploration of deep space.”

This always happens during Solar Minimum. As solar activity goes down, cosmic rays go up. The last two Solar Minima have been unusually deep, leading to high cosmic ray fluxes in 2008-2010 and again in 2018-2019. These are the worst years since humans first left Earth in the 1960s.

“It’s a bit counterintuitive,” says one of the authors, Nathan Schwadron, a space physicist at the University of New Hampshire. “Solar Minimum may actually be more dangerous than Solar Maximum.”

In their paper, Zeitlin, Schwadron and co-authors describe an interesting experiment by NASA that highlights the relative peril of solar flares vs. cosmic rays. In 2011, NASA launched the Curiosity rover to Mars. Inside its spacecraft, the rover was protected by about as much shielding (20 gm/cm^2) as a human astronaut would have. A radiation sensor tucked inside kept track of Curiosity’s exposure.

The results were surprising. During the 9-month journey to Mars, radiation from solar flares (including the strongest flare of the previous solar cycle) accounted for only about 5% of Curiosity’s total dose. The remaining 95% came from cosmic rays.

Why the imbalance? “Solar flares of the size we’ve seen during the Space Age can be largely mitigated by achievable depths of spacecraft shielding(1),” explains Zeitlin. “We can’t stop the highest energy cosmic rays, however. They penetrate the walls of any spacecraft.”


Solar flares are still a concern. If an astronaut were caught outside on EVA during an intense, unexpected flare, acute effects could include vomiting, fatigue, and low blood counts. A quick return to Earth might be required for medical care. Cosmic rays are more insidious, acting slowly, with maladies such as cancer or heart disease showing up years after the exposure.

As 2019 unfolds, Solar Minimum appears to still be deepening. Cosmic rays haven’t quite broken the Space Age record set in 2009-2010, but they’re getting close, only percentage points from the highest values CRaTER has ever recorded.

“No one can predict what will happen next,” says Schwadron. “However, the situation speaks for itself: We are experiencing a period of unusually weak solar cycles. We have to be prepared for strong cosmic rays.”


(1) According to Zeitlin, “achievable” shielding depths will be at least 20 to 30 gm/cm^2. “Vehicles carrying humans into deep space will likely have storm shelters that will provide this much shielding or more, and that would indeed be sufficient – even for an event like the great solar flare of August 1972 during the Apollo program – to keep the accumulated dose below the 30-day limit.”


“Update on Galactic Cosmic Ray Integral Flux Measurements in Lunar Orbit With CRaTER”, by C. Zeitlin, N. A. Schwadron, H. E. Spence, A. P. Jordan, M. D. Looper, J. Wilson, J. E. Mazur, L. W. Townsend.

Link to the original post is HERE


Another Sunspot From The Next Solar Cycle

Solar Cycle 25 is coming to life. For the second time this month, a sunspot from the next solar cycle has emerged in the sun’s southern hemisphere. Numbered “AR2744”, it is inset in this magnetic map of the sun’s surface from NASA’s Solar Dynamics Observatory:


How do we know this sunspot belongs to Solar Cycle 25? Its magnetic polarity tells us so. Southern sunspots from old Solar Cycle 24 have a -/+ polarity. This sunspot is the opposite: +/-. According to Hale’s Law, sunspots switch polarities from one solar cycle to the next. AR2744 is therefore a member of Solar Cycle 25.

Solar cycles always mix together at their boundaries. Right now we are experiencing the tail end of decaying Solar Cycle 24. AR2744 shows that we are simultaneously experiencing the first stirrings of Solar Cycle 25. The transition between Solar Cycle 24 and Solar Cycle 25 is underway.

Shortlived “ephemeral sunspots” belonging to Solar Cycle 25 have already been reported on Dec. 20, 2016; April 8, 2018; Nov. 17, 2018; May 28, 2019 and July 1, 2019. Today’s sunspot is more important than those earlier examples because it has lasted long enough to receive a numberical designation: AR2744. Record-keepers will likely mark this as the first official sunspot of Solar Cycle 25.

This development does not mean Solar Minimum is finished. On the contrary, low solar activity will probably continue for at least another year as Solar Cycle 24 decays and Solar Cycle 25 slowly sputters to life. AR2744 is an important sign, however, that the solar cycle is progressing.

New Evidence Cosmic Rays Impact Climate

New evidence suggests that high-energy particles from space known as galactic cosmic rays affect the Earth’s climate by increasing cloud cover, causing an “umbrella effect.” –Kobe University, Japan, 3 July 2019

Intensified East Asian winter monsoon during the last geomagnetic reversal transition
Yusuke Ueno, Masayuki Hyodo, Tianshui Yang & Shigehiro Katoh
Scientific Reportsvolume 9, Article number: 9389 (2019) | Download Citation


The strength of Earth’s magnetic dipole field controls galactic cosmic ray (GCR) flux, and GCR-induced cloud formation can affect climate. Here, we provide the first evidence of the GCR-induced cloud effect on the East-Asian monsoon during the last geomagnetic reversal transition. Bicentennial-resolution monsoon records from the Chinese Loess Plateau revealed that the summer monsoon (SM) was affected by millennial-scale climate events that occurred before and after the reversal, and that the winter monsoon (WM) intensified independently of SM variations; dust accumulation rates increased, coinciding with a cooling event in Osaka Bay. The WM intensification event lasted about 5000 years across an SM peak, during which the Earth’s magnetic dipole field weakened to <25% of its present strength and the GCR flux increased by more than 50%. Thus, the WM intensification likely resulted from the increased land–ocean temperature gradient originating with the strong Siberian High that resulted from the umbrella effect of increased low-cloud cover through an increase in GCR flux.

Details HERE


Sunspots from Solar Cycle 25? has the details:

SUNSPOTS FROM THE NEXT SOLAR CYCLE: Solar Minimum is here, but it won’t last forever. In fact, the next solar cycle made a brief appearance this week. On July 1st, a small sunspot materialized in the sun’s southern hemisphere (S21W02), then, hours later, vanished again. The polarity of its magnetic field marks it as a likely member of Solar Cycle 25:


More HERE.

If they do not hang around and get a number do they really count as cycle 25 spots?

The Next Grand Solar Minimum is Approaching

Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale

Another paper by V. V. Zharkova, S. J. Shepherd, S. I. Zharkov & E. Popova 


Recently discovered long-term oscillations of the solar background magnetic field associated with double dynamo waves generated in inner and outer layers of the Sun indicate that the solar activity is heading in the next three decades (2019–2055) to a Modern grand minimum similar to Maunder one. On the other hand, a reconstruction of solar total irradiance suggests that since the Maunder minimum there is an increase in the cycle-averaged total solar irradiance (TSI) by a value of about 1–1.5 Wm−2 closely correlated with an increase of the baseline (average) terrestrial temperature. In order to understand these two opposite trends, we calculated the double dynamo summary curve of magnetic field variations backward one hundred thousand years allowing us to confirm strong oscillations of solar activity in regular (11 year) and recently reported grand (350–400 year) solar cycles caused by actions of the double solar dynamo. In addition, oscillations of the baseline (zero-line) of magnetic field with a period of 1950 ± 95 years (a super-grand cycle) are discovered by applying a running averaging filter to suppress large-scale oscillations of 11 year cycles. Latest minimum of the baseline oscillations is found to coincide with the grand solar minimum (the Maunder minimum) occurred before the current super-grand cycle start. Since then the baseline magnitude became slowly increasing towards its maximum at 2600 to be followed by its decrease and minimum at ~3700. These oscillations of the baseline solar magnetic field are found associated with a long-term solar inertial motion about the barycenter of the solar system and closely linked to an increase of solar irradiance and terrestrial temperature in the past two centuries. This trend is anticipated to continue in the next six centuries that can lead to a further natural increase of the terrestrial temperature by more than 2.5 °C by 2600.


Until recently, solar activity was accepted to be one of the important factors defining the temperature on Earth and other planets. In this paper we reproduced the summary curve of the solar magnetic field associated with solar activity5,6 for the one hundred thousand years backward by using the formulas describing the sum of the two principal components found from the full disk solar magnetograms. In the past 3000 years the summary curve shows the solar activity for every 11 years and occurrence of 9 grand solar cycles of 350–400 years, which are caused by the beating effects of two magnetic waves generated by solar dynamo at the inner and outer layers inside the solar interior with close but not equal frequencies6.

The resulting summary curve reveals a remarkable resemblance to the sunspot and terrestrial activity reported in the past millennia including the significant grand solar minima: Maunder Minimum (1645–1715), Wolf minimum (1200), Oort minimum (1010–1050), Homer minimum (800–900 BC) combined with the grand solar maxima: the medieval warm period (900–1200), the Roman warm period (400–10BC) etc. It also predicts the upcoming grand solar minimum, similar to Maunder Minimum, which starts in 2020 and will last until 2055.

A reconstruction of solar total irradiance suggests that there is an increase in the cycle-averaged total solar irradiance (TSI) since the Maunder minimum by a value of about 1–1.5 Wm−2 27. This increase is closely correlated with the similar increase of the average terrestrial temperature26,43. Moreover, from the summary curve for the past 100 thousand years we found the similar oscillations of the baseline of magnetic field with a period of 1950 ± 95 years (a super-grand solar cycle) by filtering out the large-scale oscillations in 11 year cycles. The last minimum of a super-grand cycle occurred at the beginning of Maunder minimum. Currently, the baseline magnetic field (and solar irradiance) are increasing to reach its maximum at 2600, after which the baseline magnetic field become decreasing for another 1000 years.

The oscillations of the baseline of solar magnetic field are likely to be caused by the solar inertial motion about the barycentre of the solar system caused by large planets. This, in turn, is closely linked to an increase of solar irradiance caused by the positions of the Sun either closer to aphelion and autumn equinox or perihelion and spring equinox. Therefore, the oscillations of the baseline define the global trend of solar magnetic field and solar irradiance over a period of about 2100 years. In the current millennium since Maunder minimum we have the increase of the baseline magnetic field and solar irradiance for another 580 years. This increase leads to the terrestrial temperature increase as noted by Akasofu26 during the past two hundred years. Based on the growth rate of 0.5 C per 100 years26 for the terrestrial temperature since Maunder minimum, one can anticipate that the increase of the solar baseline magnetic field expected to occure up to 2600 because of SIM will lead, in turn, to the increase of the terrestrial baseline temperature since MM by 1.3 °C (in 2100) and, at least, by 2.5–3.0 °C (in 2600).

Naturally, on top of this increase of the baseline terrestrial temperature, there are imposed much larger temperature oscillations caused by standard solar activity cycles of 11 and 350–400 years and terrestrial causes. The terrestrial temperature is expected to grow during maxima of 11 year solar cycles and to decrease during their minima. Furthermore, the substantial temperature decreases are expected during the two grand minima47 to occur in 2020–2055 and 2370–24156, whose magnitudes cannot be yet predicted and need further investigation. These oscillations of the estimated terrestrial temperature do not include any human-induced factors, which were outside the scope of the current paper.

Continue reading HERE

Keep your warm coat handy the climate is about to get interesting.

The Setup is like 1315

Guest Commentary by David Archibald at Watts Up With That

The area planted for corn and soybeans this season is well below historic averages. This was mostly due to waterlogged fields and flooding which precluded planting. The planting windows for corn and soybeans are now closed. The USDA crop progress reports provide weekly updates by state. For example this is the state of the corn crop in Indiana to Monday June 17:


Figure 1: Indiana corn crop progress to Monday June 17.

The emerged crop is one month behind where it was in 2018. Which means that maturity will be one month later at best, assuming that the rest of the summer isn’t abnormally cold.

Figure 2 shows that the same situation in soybeans in Indiana:


Figure 2: Indiana soybean crop progress to Monday June 17.

The current expectation is that the US corn crop will be down 30% on 2018 which will push the price to about $9.00 per bushel at harvest. What could make the situation a lot worse is an early frost. The Corn Belt did warm slightly over the last 100 years due to the high solar activity of the second half of the 20th century. This is shown by the cumulative growing degree days (GDD) of the first decade of the 20th century (blue lines) compared to the first decade of the 21st century (red lines) in Figure 3 for Whitestown, Indiana:


Figure 3: Cumulative GDD for Whitestown, Indiana

Normally, for the 21st century, the corn crop is in the ground by April 27 and the crop has reached maturity with 2,500 GDD well before the normal first frost date for Whitestown of October 10. The earliest recorded date for Whitestown is September 3. That was in 1908. If that is repeated in 2019 the crop will be only 80% through its growth cycle. Yield and quality will be well down and the total crop may be 50% or less of the 2018 level.

The US will be able to feed itself but at much higher prices. Currently some 40% of the corn crop goes to ethanol production and this could be redirected to animal feed without too much trouble. But protein production would still be well down. Each 56 lb bushel of corn used in ethanol production results in 18 lbs of dried distillers grains (DDG) containing the protein. This is used as a feed supplement to pigs, chickens and cattle. Both pigs and chickens have a 25% conversion efficiency of vegetable protein to animal protein. The global warmers want us to adopt vegetarianism in order to save the planet. The public is going to get a taste of that future coming up soon. However animal fat is essential for infant neurological development and brain function so we can’t go completely vegetarian.

What is happening in the Corn Belt is a mini version of the transition from the Medieval Warm Period to the Little Ice Age. The population of Europe exploded in benign conditions of the Medieval Warm Period from 1000 AD to 1300 AD, reaching population levels that weren’t matched again until the 19th century. In fact parts of rural France have less population today than at the beginning of the 14th century.

The breakover from the Medieval Warm Period to the Little Ice Age in Europe had sustained periods of bad weather characterised by severe winters and rainy and cold summers. The Great Famine of 1315 – 1317 started with bad weather in the spring of 1315. Crop failures lasted through 1316 until the summer of 1317. The population decline over the two years is thought to be about 10%, associated with “extreme levels of crime, disease, mass death, cannibalism and infanticide.” These conditions may be less in the Mormons amongst us who are instructed to keep one year’s worth of food in stock.

The Modern Warm Period ended in 2006. Current solar activity is back to levels of the Little Ice Age. To paraphrase Santayana, those who don’t remember history are condemned to being surprised and unprepared when it repeats itself.

A large and increasing number of nations are feeding their population growth with imported grain. That is going to be become more expensive to continue, with or without an early frost in the Corn Belt. Global warming hysteria has been a consequence of very benign conditions for the OECD countries where it is concentrated. That angst will be supplanted by more basic concerns.

David Archibald is the author of American Gripen: The Solution to the F-35 Nightmare

I am going to create a Google Alert to track early frost reports. I will share the results.